Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.746
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612578

RESUMO

Ultraviolet radiation (UVR) has various effects on human cells and tissues, which can lead to a variety of skin diseases and cause inconvenience to people's lives. Among them, solar dermatitis is one of the important risk factors for malignant melanoma, so prevention and treatment of solar dermatitis is very necessary. Additionally, liquiritin (LQ) has anti-inflammatory effects. In this study, we aimed to evaluate the anti-inflammatory and pro-wound healing effects of liquiritin carbomer gel cold paste (LQ-CG-CP) in vitro and in vivo. The results of MTT experiments showed no cytotoxicity of LQ at concentrations of 40 µg/mL and below and cell damage at UVB irradiation doses above 60 mJ/cm2. Moreover, LQ can promote cell migration. ELISA results also showed that LQ inhibited the elevation of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) after UVB irradiation. In the mouse model of solar dermatitis, 2% LQ-CG-CP showed the best therapeutic efficacy for wound healing and relief of itching compared to MEIBAO moist burn moisturizer (MEBO). What is more, the results of skin histopathological examination show that LQ-CG-CP promotes re-epithelialization, shrinks wounds, and promotes collagen production, thus promoting wound healing. Simultaneously, LQ-CG-CP reduced TNF-α, IL-1ß, and IL-6 expression. In addition, LQ-CG-CP was not observed to cause histopathological changes and blood biochemical abnormalities in mice. Overall, LQ-CG-CP has great potential for the treatment of solar dermatitis.


Assuntos
Resinas Acrílicas , Dermatite , Flavanonas , Glucosídeos , Queimadura Solar , Animais , Camundongos , Humanos , Raios Ultravioleta , Interleucina-6 , Fator de Necrose Tumoral alfa , Cicatrização , Interleucina-1beta , Anti-Inflamatórios
2.
Water Sci Technol ; 89(6): 1570-1582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557719

RESUMO

Despite the high adsorption capacity of polyaluminum chloride and anionic polyacrylamide water treatment residuals (PAC-APAM WTRs) for Pb2+, Cd2+, Cu2+, and Zn2+, their influence on the adsorption behavior of heavy metals in traditional bioretention soil media remains unclear. This study investigated the impact of PAC-APAM WTRs at a 20% weight ratio on the adsorption removal of Pb2+, Cd2+, Cu2+, and Zn2+ in three types of soils. The results demonstrated improved heavy metal adsorption in the presence of PAC-APAM WTRs, with enhanced removal observed at higher pH levels and temperatures. The addition of PAC-APAM WTRs augmented the maximum adsorption capacity for Pb2+ (from 0.98 to 3.98%), Cd2+ (from 0.52 to 10.99%), Cu2+ (from 3.69 to 36.79%), and Zn2+ (from 2.63 to 13.46%). The Langmuir model better described the data in soils with and without PAC-APAM WTRs. The pseudo-second-order model more accurately described the adsorption process, revealing an irreversible chemical process, although qe demonstrated improvement with the addition of PAC-APAM WTRs. This study affirms the potential of PAC-APAM WTRs as an amendment for mitigating heavy metal pollution in stormwater bioretention systems. Further exploration of the engineering application of PAC-APAM WTRs, particularly in field conditions for the removal of dissolved heavy metals, is recommended.


Assuntos
Resinas Acrílicas , Hidróxido de Alumínio , Metais Pesados , Purificação da Água , Cádmio , Solo , Adsorção , Chumbo , Metais Pesados/análise , Purificação da Água/métodos
3.
Clin Exp Dent Res ; 10(2): e842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597122

RESUMO

OBJECTIVE: To investigate the effect of common beverages on four currently used provisional restoration materials: Protemp®4, Integrity®, polymethyl methacrylate (PMMA) block, and acrylic resin. Flowable resin composite is included as a control group. MATERIALS AND METHODS: Each material was formed into disks of 10-mm diameter and 4-mm thickness (N = 40) by loading the material into acrylic molds. The exposed surface in the mold was covered using a glass slide to prevent an oxygen inhibition layer, and polymerization then proceeded. The solidified disks were placed in distilled water for 24 h. These samples (n = 8) were then immersed for 14 days in one of four different beverages: water, orange juice, cola, and coffee. Changes in color dimension, hardness, and roughness were observed and then analyzed using two-way repeated analysis of variance. RESULTS: The provisional materials had more obvious changes in all three color dimensions than the flowable resin composite. Integrity showed the biggest changes, followed by acrylic resin and PMMA block, whereas Protemp had the smallest changes. The hardness of all the materials significantly decreased after immersion in any of the beverages for 14 days. There were no changes in surface roughness when the materials were immersed in distilled water. The surface roughness of the PMMA block significantly decreased in orange juice whereas that of Integrity and acrylic resin significantly increased in cola. CONCLUSION: Different kinds of provisional materials had different degrees of staining due to their composition. Moisture had a significant influence on the hardness of materials, and the acidity of cola significantly roughened the surface of the provisional materials.


Assuntos
Bebidas , Polimetil Metacrilato , Resinas Acrílicas , Café , Água
4.
Sci Rep ; 14(1): 7926, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575619

RESUMO

Nanofibers are investigated to be superiorly applicable in different purposes such as drug delivery systems, air filters, wound dressing, water filters, and tissue engineering. Herein, polyacrylonitrile (PAN) is thermally treated for autocatalytic cyclization, to give optically active PAN-nanopolymer, which is subsequently applicable for preparation of nanofibers through solution blow spinning. Whereas, solution blow spinning is identified as a process for production of nanofibers characterized with high porosity and large surface area from a minimum amounts of polymer solution. The as-prepared nanofibers were shown with excellent photoluminescence and microbicide performance. According to rheological properties, to obtain spinnable PAN-nanopolymer, PAN (12.5-15% wt/vol, honey like solution, 678-834 mPa s), thermal treatment for 2-4 h must be performed, whereas, time prolongation resulted in PAN-nanopolymer gelling or rubbering. Size distribution of PAN-nanopolymer (12.5% wt/vol) is estimated (68.8 ± 22.2 nm), to reflect its compatibility for the production of carbon nanofibers with size distribution of 300-400 nm. Spectral mapping data for the photoluminescent emission showed that, PAN-nanopolymer were exhibited with two intense peaks at 498 nm and 545 nm, to affirm their superiority for production of fluorescent nanofibers. The microbial reduction % was estimated for carbon nanofibers prepared from PAN-nanopolymer (12.5% wt/vol) to be 61.5%, 71.4% and 81.9%, against S. aureus, E. coli and C. albicans, respectively. So, the prepared florescent carbon nanofibers can be potentially applicable in anti-infective therapy.


Assuntos
Resinas Acrílicas , Anti-Infecciosos , Nanofibras , Escherichia coli , Staphylococcus aureus , Desenvolvimento Industrial , Candida albicans , Carbono
5.
São Paulo; s.n; 20240301. 98 p.
Tese em Português | LILACS, BBO - Odontologia | ID: biblio-1532845

RESUMO

Este estudo tem por objetivo avaliar a influência do tratamento térmico (TT) a seco pós-cura sobre as propriedades mecânicas e ópticas de resinas acrílicas ativadas quimicamente (Dencôr e Duralay) e resinas bisacrílicas (Protemp 4 e Primma Art). Os corpos de prova (cps) foram confeccionados nas dimensões de 12mm de diâmetro e 1mm de espessura em matriz de poliacetal. Após a confecção, as resinas foram divididas em grupos experimentais onde receberam TT, pelo período de 10 minutos, 70 C (TT70), a 100 C (TT100) ou a 130 C (TT130) e as pertencentes ao grupo controle foram mantidas a 24 C (CTL) pelo mesmo período. A diferença de cor (CIEDE2000 - E00) e o parâmetro de translucidez (PT) foram avaliados utilizando um espectrofotômetro. A resistência ao manchamento após imersão em água, vinho tinto e café durante 30 dias também foi avaliada por meio da E00. A avaliação de microdureza Knoop (KHN) foi realizada no microdurômetro e a análise da resistência à flexão biaxial (RFB) teve o auxílio da máquina de ensaio universal pelo método pistão sobre três esferas. O TT não teve influência sobre a RFB. O grupo TT130 produziu valores de KHN maiores que os demais grupos. Todos os TT acarretaram um aumento significativo no E00, com exceção do grupo TT70 da Dencôr e da Protemp. O TT na Dencôr resultou em aumento do PT, e para a Duralay e Protemp, uma redução do PT em TT100 e TT130. No geral, as resinas acrílicas apresentaram um aumento da estabilidade de cor ao serem submetidas ao TT. Para as resinas bisacrílicas, o TT não influenciou a resistência ao manchamento. O presente trabalho concluiu que os TTs produziram aumento na KHN (TT130) e não influenciaram a RFB. O TT e a imersão em corantes levaram a uma maior diferença de cor, todavia dentro do limite de aceitabilidade. Houve aumento pontual da resistência ao manchamento das resinas.


Assuntos
Temperatura , Resinas Acrílicas , Tratamento Térmico , Polimetil Metacrilato
6.
BMC Oral Health ; 24(1): 357, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509542

RESUMO

BACKGROUND: This study compared the impact of thermal cycling on the flexural strength of denture-base materials produced through conventional and digital methods, using both subtractive and additive approaches. METHODS: In total, 60 rectangular specimens were fabricated with specific dimensions for flexural strength tests. The dimensions were set according to the International Organization for Standardization (ISO) guideline 20795-1:2013 as 64 × 10 × 3.3 ± 0.2 mm. Specimens from each material group were divided into two subgroups (thermal cycled or nonthermal cycled, n = 10/group). We used distinct methods to produce three different denture-base materials: Ivobase (IB), which is a computer-aided-design/computer-aided-manufacturing-type milled pre-polymerized polymethyl methacrylate resin disc; Formlabs (FL), a 3D-printed denture-base resin; and Meliodent (MD), a conventional heat-polymerized acrylic. Flexural strength tests were performed on half of the samples without a thermal-cycle procedure, and the other half were tested after a thermal cycle. The data were analyzed using a two-way analysis of variance and a post hoc Tukey test (α = 0.05). RESULTS: Based on the results of flexural-strength testing, the ranking was as follows: FL > IB > MD. The effect of thermal aging was statistically significant for the FL and IB bases, but not for the MD base. CONCLUSIONS: Digitally produced denture bases exhibited superior flexural strength compared with conventionally manufactured bases. Although thermal cycling reduced flexural strength in all groups, the decrease was not statistically significant in the heat-polymerized acrylic group.


Assuntos
Resistência à Flexão , Temperatura Alta , Humanos , Resinas Acrílicas , Bases de Dentadura , Teste de Materiais , Polimetil Metacrilato , Propriedades de Superfície
7.
Niger J Clin Pract ; 27(3): 304-309, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38528349

RESUMO

BACKGROUND AND AIM: Gastroesophageal reflux disease causes gastric acid to enter the oral cavity, leading to mucosal changes and deterioration of dental hard tissues and materials. The purpose of this in vitro study was to evaluate the impact of gastric juice on the surface roughness of two types of acrylics used in provisional restorations. MATERIALS AND METHODS: Acrytemp ® and Temdent acrylic resin discs (10 × 2 mm) totaling 80 were manufactured and divided into eight groups (n = 10). Groups were prepared as follows: Group 1 (Temdent + Universal Polish) (control), Group 2 (Temdent + Universal Polish + Biscover LV), Group 3 (Temdent + Universal Polish + Resin Glaze), Group 4 (Temdent + Universal Polish + Fortify Plus), Group 5 (Acrytemp + Universal Polish) (control), Group 6 (Acrytemp + Universal Polish + Biscover LV), Group 7 (Acrytemp + Universal Polish + Resin Glaze), and Group 8 (Acrytemp + Universal Polish + Fortify Plus). The resin discs were immersed in distilled water for 24 h and in gastric juice (pH = 2) for additional 24 h. The initial and final roughness values of samples were measured and analyzed with non-parametric statistics including Mann-Whitney U-test for pairwise comparison, Kruskall Wallis test for comparing more than two groups, and Wilcoxon signed rank test for within-group comparison (P < 0.05). RESULTS: Surface roughness did not differ significantly between control groups. It notably increased for all samples with surface sealants, both initially and after gastric juice immersion (P < 0.05). CONCLUSION: Surface sealants noticeably increased the roughness of two types of acrylic resins. After immersing in gastric juice, Group 4 (Temdent + Universal Polish + Fortify Plus) showed the highest roughness, while the untreated control groups remained the smoothest.


Assuntos
Acrilatos , Resinas Acrílicas , Resinas Compostas , Cimentos de Resina , Humanos , Propriedades de Superfície , Teste de Materiais , Suco Gástrico , Materiais Dentários
9.
BMC Oral Health ; 24(1): 384, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528493

RESUMO

BACKGROUND: The purpose of the study is to analyse the effects of different inhaled asthma medications (IAMs) on the color change of dental restorative materials (DRMs). METHODS: In total, 192 samples were taken from six different DRMs: [Filtek Z550 (nanohybrid composite), Fusio Liquid Dentin (Self-adhering flowable composite), Filtek Ultimate (nanofilled flowable composite), Dyract XP (compomer), Fuji II LC (resin-modified glass ionomer), Fuji IX Fast (self-cured-packable glass ionomer), (n = 32)]. After the initial color values (CIELab) of DRMs were measured by using a spectrophotometer, each sample was exposed to the same IAMs via nebulizer according to the four different inhaled therapies and measurements were repeated on the 7th & 21st days. RESULTS: In all IAM groups, DRM with the least amount of ΔE was nanohybrid composite, while the highest ΔE was found in Fuji II LC. Among all experimental groups, only Fuji II LC which was administered the combined medication, exceeded the clinically unacceptable threshold (ΔE = 3.3) on 7th & 21st days. CONCLUSIONS: Consequently, important factors affecting the susceptibility to color stability are the type of IAMs, the administration time-dosage, and the type of DRMs.


Assuntos
Resinas Compostas , Restauração Dentária Permanente , Humanos , Criança , Resinas Acrílicas , Dióxido de Silício , Cimentos de Ionômeros de Vidro , Teste de Materiais , Materiais Dentários , Cor
10.
Dent Med Probl ; 61(1): 93-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426654

RESUMO

BACKGROUND: Glass ionomers are widely used for restoring carious primary teeth. However, their ability to bond to primary dentin is considered a challenge in pediatric dentistry. OBJECTIVES: The study aimed to evaluate the microshear bond strength (µSBS) of a resin-modified glass ionomer (RMGI) and a high-viscosity glass ionomer cement (Hv-GIC) to primary dentin using a universal adhesive. MATERIAL AND METHODS: Thirty human primary maxillary canines were cut in half and prepared for the µSBS test. The specimens (N = 60) were assigned to 6 groups. Three groups were defined for RMGI (FUJI II LC) and 3 groups for Hv-GIC (EQUIA Forte): with an immediately curing adhesive (G-Premio); with a delayed curing adhesive; and without an adhesive (control group). After preparing the dentin surfaces, the glass ionomers were bonded using Tygon® tubes with an internal diameter of 0.7 mm. The µSBS test was performed, and the data was analyzed using two-way analysis of variance (ANOVA) followed by Tukey's post hoc test. Additionally, the failure modes were determined using a stereomicroscope. Six specimens, one for each study group, were prepared for scanning electron microscopy (SEM) analysis to observe the glass ionomer-dentin interface. RESULTS: The type of glass ionomer did not have a significant effect on the µSBS (p = 0.305). Groups that received universal adhesive application prior to glass ionomer exhibited a significantly higher µSBS (p < 0.0001). However, there was no significant difference between the immediately curing and delayed curing groups (p = 0.157). The predominant failure mode was mixed failure. CONCLUSIONS: Higher bond strength of glass ionomers to primary teeth can be achieved by using universal adhesives, which, in addition to the proven benefits of glass ionomers, can improve their clinical success.


Assuntos
Resinas Acrílicas , Colagem Dentária , Cimentos Dentários , Dióxido de Silício , Criança , Humanos , Cimentos Dentários/química , Cimentos de Ionômeros de Vidro/química , Dentina
11.
Int J Biol Macromol ; 265(Pt 2): 130795, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492696

RESUMO

The utilization of biomass-based conductive polymer hydrogels in wearable electronics holds great promise for advancing performance and sustainability. An interpenetrating network of polyacrylamide/2-hydroxypropyltrimethyl ammonium chloride chitosan (PAM/HACC) was firstly obtained through thermal-initiation polymerization of AM monomers in the presence of HACC. The positively charged groups on HACC provide strong electrostatic interactions and hydrogen bonding with the PAM polymer chains, leading to improved mechanical strength and stability of the hydrogel network. Subsequently, the PAM/HACC networks served as the skeletons for the in-situ polymerization of polypyrrole (PPy), and then the resulting conductive hydrogel demonstrated stable electromagnetic shielding performance (40 dB), high sensitivity for strain sensing (gauge factor = 2.56). Moreover, the incorporation of quaternary ammonium chitosan into PAM hydrogels enhances their antimicrobial activity, making them more suitable for applications in bacterial contamination or low-temperature environments. This conductive hydrogel, with its versatility and excellent mechanical properties, shows great potential in applications such as electronic skin and flexible/wearable electronics.


Assuntos
Resinas Acrílicas , Compostos de Amônio , Quitosana/análogos & derivados , Compostos de Amônio Quaternário , Polímeros , Pirróis , Antibacterianos/farmacologia , Condutividade Elétrica , Hidrogéis
12.
Int J Biol Macromol ; 265(Pt 2): 130922, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518932

RESUMO

In this work, chitosan-grafted-poly(acrylic acid) (CS-g-PAA) was synthesized for use as a Co2+ adsorbent and circularly utilized as a peroxymonosulfate (PMS) activator in the degradation of rhodamine B (RhB) dye. CS-g-PAA demonstrated 3.7 times higher adsorption capacity toward Co2+ than pristine chitosan. The impact of the adsorption conditions was evaluated. The pseudo-second-order kinetic model and the Langmuir isotherm model best described the adsorption process. Under optimum conditions, the adsorption capacity of CS-g-PAA for Co2+ was 212 mg/g. The Co2+-adsorbed CS-g-PAA hydrogel was further utilized in the RhB degradation process. The effects of catalyst dosage, initial RhB concentration, pH, and the coexistence of anions on the degradation of RhB were studied. The hydrogel catalyst could remove 98 % of RhB within 5 min, at a degradation rate of 0.624 per min. Electron paramagnetic resonance (EPR) analysis and the radical scavenger experiment suggested that SO4•-, HO•, 1O2, and O2•- were involved in the degradation. Furthermore, when tested in various water systems, high degradation efficiencies of 98 % were attained after 20 min. The hydrogel catalyst performed excellent degradation over ten cycles without any chemical recovery processes. Moreover, high degradation efficiencies were observed between 95 % and 98 % when tested with other dyes.


Assuntos
Resinas Acrílicas , Quitosana , Peróxidos , Corantes , Hidrogéis , Adsorção
13.
Int J Biol Macromol ; 265(Pt 2): 131039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518938

RESUMO

In our present work, an explicit crosslinked thermo-responsive hydrogel platform has been developed, by using polyacrylamide (PAAm), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(cyclohexyl methacrylate) (PCHMA), and then coupled with urease to yield bioconjugates (BCs). Synergic effect of these polymer units provides thermoresponsive nature, optimum crosslinking with desired swelling behaviour, and stability and improved catalytic to Urease in the resultant BCs. Synthesis of the terpolymer has been achieved by employing HEMA (monomer as well as crosslinker), instead of using the conventional crosslinkers, through free radical solution polymerization technique. Various grades of TRPUBs have been fabricated by varying HEMA and CHMA contents while keeping fixed amounts of AAm. Further, the structural analysis of BCs has been done by fourier transform infra-red spectroscopic study and their thermal stabilities have been studied by thermogravimetric analysis. Urea present in TRPUBs has beenanalysed for its hydrolysis atdifferent temperatures viz., 25 °C, 45 °C and 70 °C. Further, the effect of crosslinking, temperature and reaction time on catalytic activities of TRPUBs has been studied. TRPUBs grades have showna maximum swelling capacity up to 5200 %; excellent catalytic activity even at 70 °C; and 85 % activity retention after 18 days storage in buffer medium.


Assuntos
Resinas Acrílicas , Hidrogéis , Urease , Hidrogéis/química , Urease/química , Metacrilatos/química , Poli-Hidroxietil Metacrilato/química , Acrilamidas
14.
Int J Biol Macromol ; 265(Pt 1): 130755, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490379

RESUMO

Microwave promoted graft copolymerization of poly (ethyl acrylate) onto kappa-carrageenan in presence of a redox pair (ascorbic acid and potassium persulfate) led to the formation of a novel copolymer hydrogel, kappa-carrageenan-graft-poly (ethylacrylate). By varying the reaction conditions such as the microwave power, reaction time, concentration of kappa-carrageenan, ascorbic acid and persulfate, copolymers of highest percentage grafting was obtained and characterized by FT-IR, SEM, TGA and XRD. The copolymer was evaluated as an adsorbent for the adsorption of Ni(II) and Cd(II). Various adsorption parameters such as contact time, pH, initial metal ion concentration, temperature, electrolyte strength and adsorbent dosage were varied to obtain the optimum conditions for the adsorption. The adsorption data for Cd(II), fitted better for Langmuir and Ni(II), fitted much better for Freundlich adsorption isotherm model. Maximum adsorption obtained for cadmium ions and nickel ions was 308.6 mg/g-1 and 305.8 mg/g-1 respectively. The adsorption of both metal ions followed pseudo second order kinetic model. The positive ΔH values endorsed the adsorption process to be endothermic in nature. The negative values of ΔG indicate the spontaneity of the adsorption process while the positive ΔS values showed that the adsorption of metal ions proceeded with increased randomness at the surface of the copolymer. High recovery percentage of the metal ions from the adsorbent indicates that the copolymer can be used for more adsorption cycles.


Assuntos
Resinas Acrílicas , Cádmio , Poluentes Químicos da Água , Cádmio/química , Carragenina , Termodinâmica , Micro-Ondas , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Metais , Íons/química , Ácido Ascórbico , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
15.
Sci Total Environ ; 926: 171587, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490421

RESUMO

Polyacrylamide (PAM) possesses unique characteristics, including high water solubility, elevated viscosity and effective flocculation capabilities. These properties make it valuable in various sectors like agriculture, wastewater treatment, enhanced oil recovery, and mineral processing industries, contributing to a continually expanding market. Despite its widespread use globally, understanding its environmental fate at the soil-water interface remains limited. This article aims to provide an overview of the occurrence, degradation pathways, toxicity, and risks associated with PAM in the bioenvironment. The findings indicate that various degradation pathways of PAM may occur in the bioenvironment through mechanical, thermal, chemical, photocatalytic degradation, and/or biodegradation. Through a series of degradation processes, PAM initially transforms into oligomers and acrylamide (AM). Subsequently, AM may undergo biodegradation, converting into acrylic acid (AA) and other compounds such as ammonia. Notably, among these degradation intermediates, AM demonstrates high biodegradability, and the bioaccumulations of both AM and AA are not considered significant. Ensuring the sustainable use of PAM necessitates a comprehensive understanding among policymakers, scholars, and industry professionals regarding PAM, encompassing its properties, applications, degradation pathways, toxic effect on humans and the environment, and relevant regulations. Additionally, this study offers insights into future priority research directions, such as establishing of a reliable source-to-destination supply chain system, determining the maximum allowable amount for PAM in farmlands, and conducting long-term trials for the PAM-containing demolition residues.


Assuntos
Solo , Água , Humanos , Água/análise , Resinas Acrílicas/química , Acrilamida
16.
Anal Chem ; 96(13): 5215-5222, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506337

RESUMO

Stimuli-responsive DNA hydrogels have shown great potential in sensing applications due to their attractive properties such as programmable target responsiveness, excellent biocompatibility, and biodegradability. In contrast to the extensively developed DNA hydrogel sensing systems based on the stimuli-responsive hydrogel-to-solution phase transition of the hydrogel matrix, the quantitative sensing application of DNA hydrogels exhibiting smart shape deformations has rarely been explored. Moreover, bulk DNA hydrogel-based sensing systems also suffer from high material cost and slow response. Herein, free-standing bilayer polyacrylamide/DNA hybrid hydrogel films with programmable responsive properties directed by the sequence of functional DNA units have been constructed. Compared with bulk DNA hydrogels, these DNA hydrogel films with a thickness at the micrometer scale not only greatly reduce the consumption of DNA materials but also facilitate the mass transfer of biomacromolecular substances within the hydrogel network, thus favoring their sensing applications. Therefore, a target-responsive smart DNA hydrogel film-based sensor system is further demonstrated based on the large amplitude macroscopic shape deformation of the film as a visual signal readout. As a proof of concept, Pb2+ or UO22+ ion-responsive DNA units were introduced into the active layer of the bilayer hydrogel films. In the presence of Pb2+ or UO22+ ions, the occurrence of a cleavage reaction within the DNA units leads to the release of DNA segments from the hydrogel film, inducing a dramatic shape deformation of the film, and thus sensing of Pb2+ or UO22+ ions with high specificity is achieved based on measuring the bending angle changes of these smart free-standing films. These smart DNA hydrogel film sensors with target-programmable responsiveness, simple operation, and ease of storage may hold promise for future rapid on-site testing applications.


Assuntos
Resinas Acrílicas , Hidrogéis , Chumbo , Metilgalactosídeos , DNA , Íons
17.
Dent Mater J ; 43(2): 255-262, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38432951

RESUMO

Surface pre-reacted glass-ionomer (S-PRG) filler is a bioactive glass filler capable of releasing various ions. A culture medium to which was added an S-PRG filler eluate rich in boron was reported to enhance alkaline phosphatase (ALP) activity in human dental pulp-derived stem cells (hDPSC). To clarify the role of boron eluted from S-PRG fillers, the modified S-PRG filler eluate with different boron concentrations was prepared by using an anion exchange material. Therefore, elemental mapping analysis of anion exchange material, adsorption ratio, hDPSCs proliferation and ALP activity were evaluated. For statistical analysis, Kruskal-Wallis test was used, with statistical significance determined at p<0.05. ALP activity enhancement was not observed in hDPSC cultured in the medium that contained the S-PRG filler eluate from which boron had been removed. The result suggested the possibility that an S-PRG filler eluate with controlled boron release could be useful for the development of novel dental materials.


Assuntos
Resinas Acrílicas , Boro , Polpa Dentária , Dióxido de Silício , Humanos , Boro/farmacologia , Cimentos de Ionômeros de Vidro , Ânions , Células-Tronco
18.
Biosens Bioelectron ; 254: 116221, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513541

RESUMO

Antibiotics are widely used for treating bacterial infections. However, excessive or improper use of antibiotics can pose a serious threat to human health and water environments, and thus, developing cost-effective, portable and effective strategies to analyze and detect antibiotics is highly desired. Herein, we reported a responsive photonic hydrogel (RPH)-based optical biosensor (PPNAH) with superior recyclability for sensitive and colorimetric determination of a typical ß-lactam antibiotic penicillin G (PG) in water. This sensor was composed of poly(N-isopropylacrylamide-co-acrylamide) smart hydrogel with incorporated penicillinase and Fe3O4@SiO2 colloidal photonic crystals (CPCs). The sensor could translate PG concentration signals into changes in the diffraction wavelength and structural color of the hydrogel. It possessed high sensitivity and selectivity to PG and excellent detection performances for other two typical ß-lactam antibiotics. Most importantly, due to the unique thermosensitivity of the poly(N-isopropylacrylamide) moieties in the hydrogel, the PG-responded PPNAH sensor could be facilely regenerated via a simple physical method at least fifty times while without compromising its response performance. Besides, our sensor was suitable for monitoring the PG-contaminated environmental water and displayed satisfactory detection performances. Such a sensor possessed obvious advantages of superior recyclability, highly chemical stability, low production cost, easy fabrication, wide range of visual detection, simple and intuitive operation for PG detection, and environmental-friendliness, which holds great potential in sensitive and colorimetric detection of the PG residues in polluted water.


Assuntos
Acrilamidas , Resinas Acrílicas , Técnicas Biossensoriais , Hidrogéis , Humanos , Hidrogéis/química , Penicilinase , Acrilamida , Colorimetria , Dióxido de Silício , Técnicas Biossensoriais/métodos , Penicilina G , Antibacterianos/análise , Água
19.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473749

RESUMO

Cerium oxide nanoparticles (CeONPs) exhibiting antioxidant properties are investigated as potential tools for neurodegenerative diseases. Here, we synthesized polyacrylic acid conjugated cerium oxide (CeO) nanoparticles, and further to enhance their neuroprotective effect, Eu3+ was substituted at different concentrations (5, 10, 15 and 20 mol%) to the CeO, which can also impart fluorescence to the system. CeONPs and Eu-CeONPs in the size range of 15-30 nm were stable at room temperature. The X-ray Photoelectron Spectroscopy (XPS) analysis revealed the chemical state of Eu and Ce components, and we could conclude that all Eu3+ detected on the surface is well integrated into the cerium oxide lattice. The emission spectrum of Eu-CeO arising from the 7F0 → 5D1 MD and 7F0 → 5D2 transitions indicated the Eu3+ ion acting as a luminescence center. The fluorescence of Eu-CeONPs was visualized by depositing them at the surface of positively charged latex particles. The developed nanoparticles were safe for human neuronal-like cells. Compared with CeONPs, Eu-CeONPs at all concentrations exhibited enhanced neuroprotection against 6-OHDA, while the protection trend of Eu-CeO was similar to that of CeO against H2O2 in SH-SY5Y cells. Hence, the developed Eu-CeONPs could be further investigated as a potential theranostic probe.


Assuntos
Resinas Acrílicas , Cério , Nanopartículas , Neuroblastoma , Humanos , Neuroproteção , Peróxido de Hidrogênio , Nanopartículas/química
20.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474111

RESUMO

Photoinduced metal-free ATRP has been successfully applied to fabricate thermo-responsive cellulose graft copolymer (PNIPAM-g-Cell) using 2-bromoisobuturyl bromide-modified cellulose as the macroinitiator. The polymerization of N-isopropylacrylamide (NIPAM) from cellulose was efficiently activated and deactivated with UV irradiation in the presence of an organic-based photo-redox catalyst. Both FTIR and 13C NMR analysis confirmed the structural similarity between the obtained PNIPAM-g-Cell and that synthesized via traditional ATRP methods. When the concentration of the PNIPAM-g-Cell is over 5% in water, it forms an injectable thermos-responsive hydrogel composed of micelles at 37 °C. Since organic photocatalysis is a metal-free ATRP, it overcomes the challenge of transition-metal catalysts remaining in polymer products, making this cellulose-based graft copolymer suitable for biomedical applications. In vitro release studies demonstrated that the hydrogel can continuously release DOX for up to 10 days, and its cytotoxicity indicates that it is highly biocompatible. Based on these findings, this cellulose-based injectable, thermo-responsive drug-loaded hydrogel is suitable for intelligent drug delivery systems.


Assuntos
Acrilamidas , Resinas Acrílicas , Celulose , Hidrogéis , Hidrogéis/química , Polimerização , Polímeros/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...